Tiny glass beads brought back by NASA‘s Apollo 17 astronauts are helping scientists uncover new clues about how the moon erupted billions of years ago.
No one expected these glittering bits among the gray lunar dust back then. The beads, smaller than grains of sand, formed when ancient lunar volcanoes spewed molten rock. That rock quickly cooled and hardened into smooth glass in the cold vacuum of space.
Now, using modern tools that weren’t available a half-century ago following the mission, researchers have zoomed in closer than ever before to look at what’s stuck on the outside of those glass beads. They found a kind of mineral powder — so fine you need microscopes to see it — formed as the beads flew through giant gas clouds during the fiery eruptions.
These surface coatings reveal how the environment around the moon’s volcanoes changed over time, according to a new study published in the journal Icarus. Instead of just confirming that lunar eruptions happened, the Brown University-led research provides insight into how they played out, layer by layer, crystal by crystal. The findings suggest the moon had a much more dynamic history of volcanoes, with evolving gas chemistry, temperature, and pressure changes, than previously known.
Support authors and subscribe to content
This is premium stuff. Subscribe to read the entire article.